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ABSTRACT

In this thesis, we further develop part of the K framework, a framework for specifying and

executing the formal semantics of languages. We dive into the LLVM backend, one of the

engines for concrete execution, and implement key functionality that is present in the other

concrete execution engine. We then add a new interface that is unique to the LLVM backend,

making this backend diverge from the other backend. Finally, with the backend caught up

and divergent, we implement and evaluate pattern matching optimization strategies.
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CHAPTER 1: INTRODUCTION

There are two main approaches to developing programming languages. Researchers often

define languages according to mathematical descriptions in the form of formal semantics,

whereas industries take the concrete approach of implement first, define later. Even with

languages that have a concrete implementation and a formal definition, there is a large dis-

tinction between the two.

The C programming language is a mature language with both a formal definition, the C

standard as defined in a readable human language, and multiple implementations, including

gcc and clang. Despite its maturity, the distinction between its definition and implementa-

tion poses many issues of correctness. One is often left to think, what is C ? More impor-

tantly, what is the correct behavior of a program in C? Naturally, one would reference the C

standard to understand behavior, but how can one understand the full behavior of a large

program when the standard isn’t executable? The next logical step would involve compiling

and executing a program with a compiler such as gcc or clang. Since these implementations

could have bugs, or their own implementation choices, how can we conclude which behavior

would be correct?

To answer these questions, we combine the definition of a language with its implementa-

tion, and arrive at the executable formal semantics of a language. There are multiple efforts

to define executable semantics of programming languages, and in this thesis we focus on one

such effort. The K framework is a framework that allows one to not only define the formal

semantics of a language, but also execute programs against these semantics. This allows one

to execute a program according to the formal semantics, and the behavior of the program

will therefore be correct by definition.

We focus on catching up one of the execution engines of K in this work, in an effort to

solidify it as the execution engine of K. We do this by first implementing the missing in-

put and output functionality, and then developing a foreign function interface that allow

languages defined in K to be usable in the real-world. Lastly, we implement new pattern

matching heuristics to speed up pattern matching and help make the LLVM backend faster

than the rest of the execution engines.

We first cover the necessary background information in chapter 2, where we define key
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concepts of K and the LLVM backend, including basic K definitions and sort interpretation

in the LLVM backend. In chapter 3, we discuss the previous interface for input and output,

and both update this interface to handle errors and describe the implementation details. We

then define the new foreign function interface in chapter 4, including the additions to the

K builtins and the implementation in the backend. Lastly, we discuss optimizations of the

LLVM backend through the pattern matching heuristics in chapter 5.

2

CHAPTER 2: BACKGROUND

K is a language and a rewriting engine for executable semantics definitions, which auto-

matically generates a parser and interpreter from a language definition [1] [2] [3]. Programs

written for languages defined in K can be verified and symbolically executed using tools that

are automatically generated from the language definition. Using K, one can define a wide

range of concurrent programming languages, type systems, or other formal languages, and

its execution engines are extremely powerful in bridging formal semantics with real systems.

We explore K, the LLVM backend of K, and systems defined in K that utilize the highly

optimized LLVM execution backend.

2.1 K

Since K is a general-purpose framework for defining a wide range of languages and sys-

tems, one would hope that such a framework is usable for real applications. The power of

K is not only in its ability to provide this bridge between definition and implementation,

but also its ability to compete with real-world implementations of some systems. In fact,

the KEvm project is one such system [4], which has the full formal specification of the

Ethereum Virtual Machine, developed by the Formal Systems Laboratory at the University

of Illinois and Runtime Verification Inc.

The K framework has made substantial contributions to the formal specification of C, as

well as many other languages. The C Semantics project defines the ”negative” semantics of

C, which accepts correct programs and reject those with undefined behavior [5]. Such a tool

is monumental in the space of formal verification, and its proprietary extension, RV-Match,

is used commercially in mission-critical applications to discover undefined behavior.

2.2 K DEFINITIONS

K is, at its core, a semantics framework and programming language. The main components

of K programs are the module definitions, where both syntactic terms and semantic rules

are defined. In K, one defines the grammar of a language, its configuration cells, and the

semantics through rewrite rules.

3
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2.2.1 Defining Grammars

K is order-sorted, allowing a much more natural definition of grammars. Grammars are

defined with the syntax keyword. For example, to define a simple grammar for arithmetic

expressions that use addition, one could write the following K definition:

syntax AExp ::= Int

| AExp "plus" AExp

Examples of terms that will be of sort AEx are 1, 3 plus 5, and 7 plus 0 plus 11. K will

automatically generate a parser from this grammar definition.

2.2.2 Configurations

Configurations in K allow us to define complex states while maintaining auxiliary compu-

tation cells. In K, matching is done on multiple configuration cells in parallel, and therefore

our rewrite rules can be quite powerful.

To define a configuration that contains two cells, the k computation cell that begins with

an AExp and the state cell, as well as a container cell, we use the configuration keyword:

configuration <T>

<k> $PGM:AExp </k>

<state> .Map </state>

</T>

This will allow us to write rules that match on both the program fragments and the current

state of the program.

2.2.3 Rewrite rules

As mentioned, rewrite rules allow us to define the semantics of a language. Rewrite rules

rely on pattern predicates that can match on any configuration fragment. For example, if

we want the interpretation of the plus operator to be the addition operator over integers,

we can add the following rule in our K definition:

rule I1 plus I2 => I1 +Int I2

Since our language definition is very simple, and does not have any state to store, we can

define rules as above that will apply to the beginning of the computation cell. What we see

4
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here is the power of the rewriting engine and pattern matching engine, since one rule can

provide the full semantics that we had in mind for our plus operator. Note that certain sorts

and functions are implemented as builtins, including the +Int operator, which are predefined

for both convenience and optimization reasons in some cases.

2.3 THE LLVM BACKEND

We now explore one of the execution engines of K, the LLVM backend. This backend

was written from the ground up to be a replacement for the previous execution engine, the

OCaml backend, and is designed to be the default execution engine for K. The majority of

the backend is written in C++, which handles the majority of the LLVM code generation

and the implementation of frontend hooks; pattern matching logic is written in Scala, and,

of course, some glue code and minor functions are written in LLVM assembly.

The core concepts relevant to this thesis are the translation between the K frontend, where

certain functions and sorts are declared, and the LLVM backend, where these functions are

implemented. There are three main object types that the backend utilizes in this thesis,

including block, string, and mpz t.

2.3.1 Integer Types

K supports the full set of integer types, whereas C++ and the underlying systems assume

fixed size integers. For this purpose, we use the gmp library for arbitrary precision arithmetic

to represent the integers, which gives us a very simple interface for arbitrary integer manip-

ulation. The functionality described in this thesis mostly relies on fixed size integers that

correspond to machine sizes, and therefore gmp is used for storing and extracting integers

of a fixed size.

2.3.2 String Types

The string type can represent both arbitrary strings of sort String, as well as the Bytes

type. This type is defined in the backend, and shares some similarities with the block type.

A string is composed of a blockheader, which contains useful information such as size and

the tag, and the data, which is a unbound char array. This type should be familiar to those

who have used strings in other languages.
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2.3.3 Block Types

Lastly, and perhaps most importantly, is the generic block type, which is the representation

of most sorts in the LLVM backend. A block, like strings, is composed of a blockheader,

together with an array of pointers called the children. The children of a block depend on the

sort that the block represents. Symbols are blocks that have no children, which is indicated

by a 1 in the lowest bit of the block pointer. As we will see in later sections, objects of

nested types have other objects as children.

6

CHAPTER 3: INPUT AND OUTPUT INTERFACE

In order to make the LLVM backend comparable to the OCaml backend, we first had

to catch up the LLVM backend’s functionality to that of the OCaml backend. One of

the most pressing functionality that was missing was an interface for input and output

(IO), which is key for defining real-world languages in K. Since the interface was already

defined in the frontend, this chapter mostly focuses on the additions to the interface and the

implementation of this interface in the LLVM backend.

3.1 THE IO INTERFACE

We’ll begin by specifying the relevant interface for input and output in the K frontend,

which has been implemented in the OCaml backend. We include the error types, as well

as the function declarations domains.k, part of the K builtins library. This interface is

responsible for Linux-style file operations, which allows languages defined in K to have their

own IO and file operations libraries. This interface allows for most basic file operations, such

as opening writing to files, as well as more advanced operations such as locking. Logging

and command execution allows languages that use this interface to develop quite complex

IO functionality, which is quite necessary for real-world languages.

3.1.1 IO Errors

In table 3.1, we show all the possible IO errors that the backend returns after an IO

operation. These include the standard Linux System Errors from errno.h, the end of file

EOF error, and our own error codes, such as noparse and unknownIOError.
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Table 3.1: IO Errors

noparse unknownIOError EOF E2BIG

EAGAIN EBADF EBUSY ECHILD

EDEADLK EDOM EEXIST EFAULT

EFBIG EINTR EINVAL ESOCKTNOSUPPORT

EISDIR EMFILE EMLINK ENAMETOOLONG

ENFILE ENODEV ENOENT ENOEXEC

ENOLCK ENOMEM ENOSPC ENOSYS

ENOTDIR ENOTEMPTY ENOTTY ENXIO

EPERM EPIPE ERANGE EROFS

ESPIPE ESRCH EXDEV EWOULDBLOCK

EINPROGRESS EALREADY ENOTSOCK EDESTADDRREQ

EMSGSIZE EPROTOTYPE ENOPROTOOPT EPROTONOSUPPORT

EIO EOPNOTSUPP EPFNOSUPPORT EAFNOSUPPORT

EADDRINUSE EADDRNOTAVAIL ENETDOWN ENETUNREACH

ENETRESET ECONNABORTED ECONNRESET ENOBUFS

EISCONN ENOTCONN ESHUTDOWN ETOOMANYREFS

ETIMEDOUT ECONNREFUSED EHOSTDOWN EHOSTUNREACH

ELOOP EOVERFLOW

3.1.2 IO Functions

We place all the relevant declarations and definitions of the IO interface in the K frontend

module, K-IO, in listing 3.1. Those familiar with Linux system calls and library functions

should see great similarities in this interface. While not specified, the majority of functions

listed have the hook attribute that connects these functions to their corresponding imple-

mentation in the various backends. Some functions, such as #open, have an alternative

calling method for convenience, and some objects syntactic sugars for comprehensible code,

including the #stdin object.
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module, K-IO, in listing 3.1. Those familiar with Linux system calls and library functions

should see great similarities in this interface. While not specified, the majority of functions

listed have the hook attribute that connects these functions to their corresponding imple-

mentation in the various backends. Some functions, such as #open, have an alternative

calling method for convenience, and some objects syntactic sugars for comprehensible code,

including the #stdin object.
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Listing 3.1: K-IO Module

syntax Int : := ”#open” ” ( ” St r ing ” ) ”

| ”#open” ” ( ” St r ing ” , ” S t r ing ” ) ”

| ”#t e l l ” ” ( ” Int ” ) ”

| ”#getc ” ” ( ” Int ” ) ”

syntax St r ing : := ”#read” ” ( ” Int ” , ” Int ” ) ”

syntax K : := ”#c l o s e ” ” ( ” Int ” ) ”

| ”#seek ” ” ( ” Int ” , ” Int ” ) ”

| ”#seekEnd” ” ( ” Int ” , ” Int ” ) ”

| ”#putc” ” ( ” Int ” , ” Int ” ) ”

| ”#wr i t e ” ” ( ” Int ” , ” S t r ing ” ) ”

| ”#lock ” ” ( ” Int ” , ” Int ” ) ”

| ”#unlock ” ” ( ” Int ” , ” Int ” ) ”

r u l e #open (S : S t r ing ) => #open (S : Str ing , ” r+” )

syntax Int : := ”#std in ”

| ”#stdout ”

| ”#s td e r r ”

r u l e #s td in => 0

ru l e #stdout => 1

ru l e #s td e r r => 2

syntax KItem : := ”#system” ” ( ” St r ing ” ) ”

| ”#systemResult ” ” ( ” Int ” , ” S t r ing ” , ” S t r ing ” ) ”

syntax K : := #logToFi l e ( Str ing , S t r ing )

Note that functions whose return type is void are of sort K in listing 3.1. Since every sort

is a subsort of K, these functions either return the .K object, indicating an empty object of

sort K, or they will return an IOError, which is also a subsort of sort K.
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3.2 MODIFICATIONS TO THE INTERFACE

Since the previous IO interface, as well as its implementation in the OCaml backend, did

not provide any error codes upon failure, this addition is necessary in the frontend interface.

We accomplish this by introducing new return sorts, IOString and IOInt.

3.2.1 IO Sorts

To incorporate the errors into the interface, we add two new sorts to the K-IO module,

namely IOInt and IOString. Note that the sort IOError existed previously. IOInt has IO-

Error and Int as subsorts, and, of course, IOString has IOError and String as subsorts.

Intuitively, an IOInt represents the result of an IO call, where an Int will be returned upon

success, and a corresponding IOError will be returned upon failure. Similarly, IOString are

returned from IO calls that return strings upon success.

Each IO call is modified to return an IOInt if it previously returned an Int, or an IOString

if it previously returned a String. With these new returned sorts, we add two functions to

retrieve the data from them. We accomplish this by adding the following two projection

functions in K:

syntax String ::= #projectString(IOString) [function]

syntax Int ::= #projectInt(IOInt) [function]

rule #projectString(S:String) => S

rule #projectInt(I:Int) => I

We have two functions, #projectString and #projectInt, which are partial functions defined

on IOString and IOInt, respectively. If the IO sort contains data, rather than an IOError,

then this data is returned. As these are partial functions, they will get stuck if an IOError

is returned; since this provides poor error handling, user-defined functions could be used

instead.

3.3 IO WITH LINUX

Implementing our interface requires large amounts of support from the operating system,

and Linux provides such support. Since the current LLVM backend supports Linux and

Linux-like systems, our choice of the Linux system calls and library as our sole support was

justified.
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The IO interface defined closely resembles that of the Linux system calls and library for

IO, which treats each IO device as a file and provides an associated file descriptor as its

handler, and therefore has a very intuitive implementation. Rather than describe the im-

plementation of each function, we will explain certain functions and give an overview of the

rest of the functions.

3.3.1 Implementing #open

The #open function is the most common entry point of the IO interface and sets the tone

for the rest of the functions. This function, which is often called with access control flags, is

responsible for parsing the control mode flags, opening the file using the system call open,

and returning a processed file descriptor that can be used in the frontend.

For generality, we set the permission bits of all files to the following default access:

S IRUSR | S IWUSR | S IRGRP | S IWGRP | S IROTH | S IWOTH

These access bits indicate that the file can be read and written by the user, group of the

user, and others, but note that this file is not executable by default.

Once the control mode flags are parsed, we set the flags to be passed to the system call using

a scheme that follows the C fopen modes. If the mode contains a +, then we set the mode

to O RDWR; otherwise, we set it to O RDONLY if the mode is r, and O WRONLY

if the mode is w or a. For both write and append modes, w and a respectively, we set the

O CREAT flag, which creates the file if it does not exist. If the mode specified is write,

then we set the O TRUNC flag to truncate, or clear, the file before it is opened; if the

mode is append, then we set the O APPEND flag. The mode x sets the O EXCL, which

ensures that opening this file will create it, and will fail otherwise. Lastly, if the mode is e,

the O CLOEXEC flag is set, specifying close-on-exec, which is critical for multithreaded

programs.

Once the mode flags are set up, the open system call is called on the filename, mode flags,

and access flags, and returns a corresponding error from table 3.1 if the call fails, or it returns

the file descriptor as an Int, both of which are subsorts of IOInt as defined previously.
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3.4 EXECUTION AND LOCKING

We provide two additional mechanisms, one for executing commands and one for locking

and unlocking files. The locking and unlocking functions, like some of the other IO func-

tions implemented, are a simple wrapper to the Linux calls. Both of these functions, after

processing the arguments into a file descriptor and length to lock, create a lock whose at-

tributes correspond to either locking or unlocking a section of the file. The locks for locking

and unlocking are identical, except that the l type is set to F WRLCK for locking, and

F UNLCK for unlocking. With the lock and file descriptor, a call to fcntl is made, which

performs the actual locking mechanism.

3.4.1 The #system Function

Executing commands requires a more complex setup, though its underlying method of

execution is a call to fork, as well as calls to either execl or system. The #system function,

which is our function for execution, accomplishes its task by creating a child process, setting

up pipes for the output of the child, executing the corresponding command, and returning

both the status and outputs of the command.

Creating the child process is simple through the use of fork, and a pipe is created for both

stdout and stderr. The child process then connects its stdout and stderr to the correspond-

ing pipes, and, if the command to execute is not empty, will execute that command through

a call to execl, followed by an exit to terminate itself. If, however, the command is empty,

then the child calls system(NULL), which returns a nonzero value if a shell is available, or

0 otherwise; this value is passed into exit.

While the child process is executing, the parent process reads the output of the child process

through the pipe, and calls waitpid to synchronize with the termination of the child. At this

point, the parent process constructs the return object from the #system function, which is

composed of the return status of the child process, the buffer containing the standard output

of the child, and the buffer containing the standard error.

3.5 LOGGING

Logging functionality is crucial for many applications, and therefore is critical in the IO

interface. In this section, we define the #logToFile function and its implementation in the
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LLVM backend. There are two main components to logging, which are the registering of

logs, and the writing of logs, which are accomplished by the log and flush logs functions

respectively.

3.5.1 Registering Logs

When a frontend application calls #logToFile, it translates to a call to log, or, more

precisely, hook IO log. This function takes the full file path and a message to log. Our

logging architecture uses a static map from file paths to a list of messages to record which

messages must be logged, and provides a mechanism for flushing these logs to the actual

log files. Our log function is responsible for registering the log files and messages in the log

map, as well as setting up the flushing mechanism. By using the Linux call atexit, the first

call to log will register the function flush logs to be called when the process terminates. In

effect, logs are recorded whenever they are sent to the backend, but logs are only written to

files when the program exits.

3.5.2 Flushing Logs To Files

Once the program exits and the logs are ready to be flushed to their corresponding files,

flush logs is called. Logs are unique to a single process, and therefore require unique iden-

tifiers. We use the pid, or process ID, to distinguish logs files with identical names from

different processes. For example, should two instances of a logging program be executed

with the log file output.log, then two log files will be created, named pid1 output.log and

pid2 output.log, where pid1 and pid2 are the pid of the two processes.

To flush all the logs, we iterate through all the log pairs that are registered in our log

map. For each one of these logs pairs, we open up the file associated with the pair, with the

addition of the process pid as the prefix for the filename. We open each file for appending,

so that the logs accumulate in the file, and write each message out in the order it appears

in. Since we use a list, our messages appear in the order that they arrived.

3.6 EXAMPLE USAGE

We can use the IO interface to build a custom interface for IO, or to add some minor

functionality to a language. Though the log function is provided in the IO interface, we
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could choose to implement our own logging mechanisms within a K program. We can easily

accomplish this goal with the following addition to the IMP syntax in appendix B:

syntax Stmt ::= "writeMsgToLog" "(" String ")"

To add meaning to our new syntactic entity, we use the following rule, which opens the file

output.log for appending, projects the file descriptor to an Int, and writes the message to

the log.

rule writeMsgToLog(S) => #write(projectInt(#open("output.log", "a+")), S)

With just one syntax addition and a single rewrite rule, we have added our own custom

logging mechanisms to our toy language. We can see how simple it is to add more complex

functionality to a language, or we can just include the full IO functionality in our toy

language. The IO interface defined in this chapter allows us to develop a rich set of libraries

for IO operations in K-based languages.
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CHAPTER 4: FFI

With the addition of the IO interface implementation, the LLVM backend was nearly

caught up to the OCaml backend in terms of functionality. However, an important piece

was missing: the Foreign Function Interaface (FFI). In this chapter, we discuss the FFI in

the K frontend and the corresponding implementation in the LLVM backend. The main

attraction of this interface is the ffiCall function, which accepts both fixed and variadic

arguments, and our support for primitive types, such as void and standard machine integer

types, as well as struct types.

4.1 THE FOREIGN FUNCTION INTERFACE

The FFI is similar in many aspects to libffi, the common library for FFI calls [6], largely

due to our usage of libffi as the underlying logic of the interface. We present the new interface

through the types that are supported, as well as the functions that are implemented.

Table 4.1: Available FFI Types

void uint8

sint8 uint16

sint16 uint32

sint32 uint64

sint64 float

double uchar

schar ushort

sshort uint

sint ulong

slong longdouble

struct ( List )

4.1.1 FFI Types

The types in table 4.1 include basic types, such as void and uint, as well as nested struct

types. Here, struct ( List ) is a type constructor that takes a list of types. For example,

consider the following struct Point in C:
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struct Point {

uint8_t x;

uint8_t y;

};

The corresponding FFI type for Point would be struct(uint8, uint8).

4.1.2 Function Address

We also define a new function, #functionAddress, in the FFI module.

syntax Int ::= "#functionAddress" "(" String ")"

This function takes a function name and returns its corresponding address in the current

address space. This function is necessary for the functions that perform the FFI call, which

we will define shortly, as these functions take the address of a function.

4.1.3 FFICall

Lastly, we show the functions that provide the actual FFI functionality. These functions

are responsible for taking a function, its arguments, and corresponding types, and performs

the actual function call to the foreign function.

We first define the most common function that is used, which corresponds to a foreign

function with fixed arguments.

syntax Bytes ::= "#ffiCall" "(" Int "," List "," List "," FFIType ")"

As mentioned previously, this function takes in the function address as an integer in the

first argument. The next argument is a list of bytes, where each element, in order, is a byte

representation of an argument to the foreign function. The second list argument is the list of

types, which are of sort FFIType, where each list element corresponds to one of the foreign

function arguments. Lastly, the return type of the foreign function is specified as an FFIType.

The next function we define performs a foreign function call as well, with the addition

of variadic arguments. We accomplish this by passing in a list of types for the fixed ar-

guments, as well as a list of types for the variadic arguments. Note that the list of values

passed in contains all the arguments; the backend will have enough information to split the

arguments based off of the lists of types.
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syntax Bytes ::=

"#ffiCall" "(" Int "," List "," List "," List "," FFIType ")"

Again, a function address and return type are necessary.

Lastly, we define the general method for calling both functions with fixed arguments, and

functions with fixed and variadic arguments. It is defined as follows:

syntax Bytes ::=

"#ffiCall" "(" Bool "," Int "," List "," List "," Int "," FFIType ")"

For reference, we show the declaration of this function with labeled arguments:

#ffiCall ( isV ar, addr, args, types,NFixed, ret )

This function is both declared and completely defined in the K frontend module FFI. It is

responsible for calling the corresponding fixed or variadic FFI call, which is accomplished

with the following two K rules:

rule #ffiCall(false, Addr::Int, Args::List, Types::List, _, Ret::FFIType)

=> #ffiCall(Addr, Args, Types, Ret)

rule #ffiCall(true, Addr::Int, Args::List, Types::List,

NFixed::Int, Ret::FFIType)

=> #ffiCall(Addr, Args, range(Types, 0, size(Types) -Int NFixed),

range(Types, NFixed, 0), Ret)

When isVar is false, this means that the function being called is not taking variadic argu-

ments, and therefore we call the non-variadic #ffiCall with the corresponding arguments,

and ignore the NFixed parameter.

When isVar is true, and therefore we would like to call the variadic function, we process

the list of types. Since NFixed represents the number of fixed arguments, we take the first

NFixed types as a list of types, and then the remaining types as a list of variadic types, all

of which we pass into the variadic form of the FFI call.

The generalized FFI call function allows us to have a uniform calling interface that isn’t

concerned with the presence or lack of variadic arguments. Though there is no difference in

calling the generalized function or the specific function necessary, it may be useful to solely

rely on the generalized function as the entry point to the interface.
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4.2 FFI TYPE CONVERSION

In this section, we describe the implementation and use of FFI types in the LLVM backend,

including type unwrapping and the corresponding calls to libffi. A link to the code can be

found in appendix A.

4.2.1 FFI Type Conversion

We begin by discussing the conversion between objects of sort FFIType from the fron-

tend, and the interpretation of that object in, which is eventually passed into libffi. This is

done in the getTypeFromBlock function.

Every FFIType object is passed to the backend in the form of a block pointer, of which

the header contains the sort FFIType and the first child of which is the symbol that cor-

responds to a type, if that child does not have its own children.

To convert a type to the corresponding libffi type, the type object is passed into getType-

FromBlock, which returns the final ffi type. Each basic type, including void, has its own

function that returns the tag that corresponds to the type. The symbol from the first child

is then compared to each type tag, which is returned from the aforementioned function, until

a match is found, and then the corresponding ffi-type is returned from libffi.

For example, if the first child of an object from the frontend has a symbol that matches

the symbol of the void type, then the object ffi type void, defined in libffi, is returned.

However, if the child does have its own children, then the type is actually a struct type,

and must be handled recursively. If a type object from the frontend is identified as a struct

type, a new ffi type, which is a struct that is defined in libffi, must be constructed. The fields

that must be set are the type, and since we only deal with one non-primitive type, which

is set to FFI TYPE STRUCT, and whose elements must be allocated and set. To get

the elements, we recursively call getTypeFromBlock on each one of the children, and set the

corresponding element in the ffi type, making sure to null -terminated the list of elements.

Since memory must be allocated for the struct types and its children, every reference is

stored in a static vector, and the elements are freed when the ffiCall function succeeds or

fails.
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To understand the conversion, we refer to the Point structure defined in section section 4.1.1.

Naturally, since it is a struct type, a new ffi type structure is allocated, and its type is set

to FFI TYPE STRUCT. Next, each child is recursively analyzed; since each child is

the primitive type uint8, its simple primitive libffi type is returned, which is ffi type uint8.

Therefore, the final ffi type structure contains two elements, both of which are ffi type uint8.

4.3 IMPLEMENTING THE FFI CALL

We now focus on the actual meat of the FFI implementation, which is the ffiCall function.

This function is responsible for interpreting the arguments from the frontend and executing

the foreign function call. There are three main tasks completed in this function. In the

backend, we implement one generalized function for both fixed and variadic arguments, and

provide specialized hooks that call the generalized function. First, arguments are processed,

including processing the types as mentioned above. Next, an FFI context is created and

prepared. Lastly, the function is executed with the corresponding arguments through libffi,

and the result is processed and returned to the frontend.

Processing the arguments involves checking the variadic arguments, if they exist, and ensur-

ing that the number of arguments is equal to the number of fixed arguments and variadic

arguments. We then process the list of FFIType objects to get a corresponding array of

ffi types, then process the list of data, which is received as Bytes, into an array of the data

in the Bytes objects, and get the return type using getTypeFromBlock.

Once the arguments are processed, and we have the arrays of ffi types, the return ffi type, the

number of arguments, and the number of fixed arguments if there are variadic arguments,

we prepare the Call InterFace object, CIF, through a call to ffi prepare cif, which is defined

in libff. Upon success, the ffi status returned is FFI OK; other return statuses are handled

by throwing labeled exceptions.

The final call takes the newly created CIF, the address of the foreign function, the ar-

guments to the function, and a pointer for the return value that will be filled. The function,

ffi call, is defined in libffi, and is responsible for performing the actual function call. When

it completes, the final return value that has been filled in is processed and returned to the

frontend application.
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4.4 FFI POINTER TYPES

Though there currently is no reference to pointer types in the frontend interface, this

would require only a minor addition to enable, as we have already implemented this in the

LLVM backend. The interface, on the backend side, is defined as follows:

string * hook_FFI_alloc(block * kitem, mpz_t size);

block * hook_FFI_free(block * kitem);

block * hook_FFI_bytes_ref(string * bytes);

mpz_ptr hook_FFI_bytes_address(string * bytes);

bool hook_FFI_allocated(block * kitem);

We have the ability to allocate and free memory in the backend in a way that both ab-

stracts the memory, yet provides concrete values for addresses. With alloc, defined in

hook FFI alloc, we pass in kitem, which will be used as our abstracted reference of the

pointer and is our handle for freeing the memory, and size, which, of course, is the number

of bytes to allocate. Upon success, this function returns a string pointer, which is the

backend representation of the frontend sort Bytes. For those familiar with languages like

C, these bytes returned are analogous to the value returned by malloc, in which a pointer

value is returned. In the process, a call to alloc will register kitem as the handle for this

address if the reference does not exist yet, or will return the corresponding address to this

reference.

When a reference is no longer needed, a call to free, or hook FFI free, will free any mem-

ory that is handled by kitem, similar to how the function free in C will free the memory

associated with a reference, or pointer.

Often times it is useful to retrieve the bytes associated with a reference handle, as the

handle itself does not contain this information. This is accomplished through a call to

hook FFI bytes ref with a valid bytes argument, but will throw an error if such a refer-

ence does not exist.

To convert between the Bytes representation of an address and an integer representation,

we provide the function hook FFI bytes address. We also provided the final function,

hook FFI allocated to check if an address, represented as a Bytes sort, contains a refer-

ence handle. This is often called before a call to ref, as it is a way to handle the no reference

error that could occur.
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4.5 EXAMPLE USAGE

Suppose we have the following C function, defined in a linked library:

int returnFive(void) {

return 5;

}

What if we wanted to build a wrapper to this function in our toy language in appendix B?

Since we know this function returns an integer, we add it as an arithmetic expression, of

which Int is a subsort.

syntax AExp ::= "foreignFive" "(" ")"

With this, we define a new term, foreignFive(). Now that we have a new syntactic entity,

we would like to give it meaning, and we do so with the following rewrite rule:

rule foreignFive ( ) =>

Bytes2Int(#ffiCall(#functionAddress("foreignFive"),

ListItem(.Bytes),

ListItem(#void),

#sint), LE, Signed)

This rule rewrites our newly defined token to an integer. The key point is the reference

to #ffiCall, where we pass in the address of an external function foreignFive, with a list

of empty Bytes and a list containing the FFIType corresponding to void, along with the

return type of #sint. The rest of the rule converts the returned Bytes to an Int.

Assuming that the function symbol foreignFive is linked against the program, and that

its type interface is the same as the one specified above, then the term foreignFive() will

rewrite to the returned value of the external function foreignFive, which is 5. With this

example, we can see how simple it is to provide custom wrappers to external functions, and

even build our own interface for external libraries using the foreign function interface defined

in this chapter.
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CHAPTER 5: PATTERN MATCHING HEURISTICS

We now shift our focus from simply closing the gap between the LLVM backend and other

execution backends, to optimizing and finely tuning our pattern matching engine. In this

chapter, we will focus on implementing Maranget’s pattern matching heuristics [7].

5.1 PATTERN MATCHING MATRICES

We follow Maranget’s work by compiling pattern matching to decision trees. We think

of pattern matching as a clause matrix of patterns and actions; if a row is matched, the

corresponding action is taken. Patterns are built up from constructor patterns, pattern

combinations, or wildcard patterns. A wildcard pattern will match any pattern, which is

quite useful for our purposes. Recall that in K, we can match on partial configurations, and

we can think of matching the rest of the configuration as wildcard patterns.

5.1.1 Decomposing the Clause Matrix

The process of compiling pattern matching matrices to decision trees uses two decompo-

sitions of the clause matrix. The first decomposition is the specialization by a constructor,

and the second is the default matrix.

Specializing by a constructor c allows us to decompose the clause matrix into a simpler

matrix, which makes the assumption that the first pattern has c as a head constructor. This

decomposition results in a matrix that retains the rows of the original clause matrix that

admit c as a head constructor, and replaces the pattern with its subterms.

The default matrix is a decomposed clause matrix, which retains rows of the clause ma-

trix that do not have a head constructor in the first column.

The specialized matrix S and default matrix D are, in a sense, simplified clause matri-

ces, and can be used in the matching process instead of the original clause matrix. This

concept is explained in lemma 1 of [7].

22



5.2 THE HEURISTICS

The pattern matching engine in the LLVM backend used some variation of the f heuristic

in [7], but we wanted to provide a better alternative that would produce the best results.

We implement all of Maranget’s heuristics, allowing applications to finely tune which heuris-

tics are used, and allow heuristics combinations for greater optimizations. We present the

heuristics for column index choice in table 5.1, and explain the pseudo-heuristics in the

implementation details.

Table 5.1: Maranget Heuristics

Alias Heuristic Brief Explanation

f first row favors columns whose first row pattern is a constructor

d small default based off the number of wildcard patterns

b small branch factor related to the number of head constructors in the column

a arity the negation of the sum of constructor arities

l leaf edge number of leaf nodes that are children of the switch node

r rows total number of rows in the decomposed matrices

n needed columns the number of rows such that the column is needed

p needed prefix size of largest prefix of rows where the column is needed

q constructor prefix approximation of p by checking constructor patterns

The implementation of these heuristics is done in Scala, which is exclusively used at

compile-time for generating decision trees, since pattern matching is built into the language

and it provides a simpler approach to such a task. Each named heuristic is its own object and

implements the computeScoreForKey method. The pseudo-heuristics N , L, and R return a

default score of 0, but implement the breakT ies method. We discuss our original heuristic

as well, and provide the comparison in the evaluation section.

Heuristic Default

In our default heuristic, we iterate over the patterns in a column and return our accumu-

lated result if we find a pattern in a new action priority. For each pattern, we provide a

score that is determined by the pattern type, and add this score to the result.
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Heuristic f: First Row

We iterate over the patterns in the column and return 1 if the action priority of the pattern

is not equal to the head action priority, similar to the default heuristic, or return 0 if we find

a wildcard pattern. By default, this method returns 0.

Heuristic d: Small Default

This heuristic returns the negative of the number of default patterns.

Heuristic b: Small Branch Factor

If the column has an incomplete signature, we return the negative of the size of the

signature minus one; otherwise, we return the negative of the size of the signature.

Heuristic a: Arity

We iterate through constructors in the column signature and expand the column fringe

by the constructor, and return the negative sum of the size of these expansions.

Heuristic l: Leaf Edge

We specialize on each constructor in the column’s signature and count the number of

specialized matrices that have a best row index. To this value, we add 1 if the default

matrix has a best row index.

Heuristic r: Rows

In this heuristic, we iterate of the constructors in the signature, and then over the patterns,

and count the number of patterns that are specialized on this constructor. We then iterate

over the patterns if the signature is incomplete, and count the number of default patterns

in the column. The resulting heuristic is the negation of this value.

Heuristic n: Needed Columns

We count the number of rows for which the column is necessary.
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Heuristic p: Needed Prefix

We count the number of rows for which the column is necessary, but return if we reach a

new priority, indicating that we passed the prefix.

Heuristic q: Constructor Prefix

This heuristic has a similar functionality to heuristic p, in that it returns if we reach a

new priority; however, we approximate by counting the number of patterns which are not

wildcards.

5.3 EVALUATION OF HEURISTIC

We evaluated the heuristics on the toy language IMP, which is a simple imperative pro-

gramming language with arithmetic and boolean expressions, control flow statements, and

loops. The full K definition of IMP can be found in appendix B. Our evaluation strat-

egy looked at the average path length taken in the compiled decision tree, which is a good

indicator of the efficiency of our heuristics. We show the 20 best results in table 5.2.

Table 5.2: Heuristics Results

Heuristic Size Shared Size Max Path Length Average Path Length

l bR 9980.0 3544.0 109.0 35.71444759206799

lqbR 9980.0 3544.0 109.0 35.71444759206799

qblR 10208.0 3586.0 109.0 35.792953929539294

qbrN 10208.0 3586.0 109.0 35.792953929539294

qbrL 10208.0 3586.0 109.0 35.792953929539294

qbrR 10208.0 3586.0 109.0 35.792953929539294

qbnN 10208.0 3586.0 109.0 35.792953929539294

qbnL 10208.0 3586.0 109.0 35.792953929539294

qbnR 10208.0 3586.0 109.0 35.792953929539294

qbpN 10208.0 3586.0 109.0 35.792953929539294

qbpL 10208.0 3586.0 109.0 35.792953929539294

qbpR 10208.0 3586.0 109.0 35.792953929539294

blR 10214.0 3587.0 109.0 35.75270562770563

brN 10214.0 3587.0 109.0 35.75270562770563

brL 10214.0 3587.0 109.0 35.75270562770563
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In our evaluation, we see that most of the metrics are quite similar for the 20 best heuristics

combinations; however, for the language defined in appendix B, we find that the combination

l bR and lqbR perform identically. Therefore, were this a real language, we would have two

rather good choices for our heuristic.

This type of evaluation is crucial in fine tuning applications when using the LLVM backend.

Each language definition may benefit from a different combination of heuristics, and find-

ing out the best combination requires evaluating all the possible heuristics combinations,

or at least the ones that can be justified to perform well. K uses a default combination of

heuristics, which appear to perform well for general applications; however, each application

may benefit from its own analysis. Certain programs may benefit from different combina-

tions despite running on the same K application, though such micro-optimizations may yield

negligible improvements.
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CHAPTER 6: CONCLUSION

The efforts put forth by the K framework allow us to define complex languages and sys-

tems, and the application of such languages can be used as the de facto execution platforms

of large systems, such as the Ethereum Virtual Machine, or as a means to verify mission

critical applications, as in the case of the C Semantics Project. We have the explicit under-

standing that definition and execution should go hand in hand, and the concrete execution

in the LLVM backend provides us such an opportunity.

By implementing the enhanced IO interface, and both developing and implementing a new

foreign function interface, we bring the LLVM backend of K one step closer towards depre-

cating the other concrete execution backends. Not only does this FFI give an edge to the

LLVM backend, but it also allows projects that rely on external libraries, such as the C

Semantics, to have a more general interface with which to interact.

We conclude by highlighting the current efforts of the LLVM backend, which largely fo-

cus on speed of bottlenecks, including garbage collection. The LLVM backend is an ongoing

project that provides the core functionality required for concrete execution of large and com-

plex languages, and provides performance tuning mechanisms through the pattern matching

heuristics discussed. The work in this thesis, as well as the tremendous amount of work done

by others before this thesis, allows the LLVM backend to be used by an increasing number

of K projects as the sole engine for concrete execution.
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[2] X. Chen and G. Roşu, “A language-independent program verification framework,” in
International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2018). Springer, November 2018, pp. 92–102.

[3] G. Rosu, “K - a semantic framework for programming languages and formal analysis
tools,” in Dependable Software Systems Engineering, ser. NATO Science for Peace and
Security, D. Peled and A. Pretschner, Eds. IOS Press, 2017.

[4] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth, B. Moore,
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[5] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the undefinedness of c,” in Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’15). ACM, June 2015, pp. 336–345.

[6] “The libffi website,” 2929. [Online]. Available: https://sourceware.org/libffi/

[7] L. Maranget, “Compiling pattern matching to good decision trees,” in Proceedings
of the 2008 ACM SIGPLAN Workshop on ML, ser. ML 08. New York,
NY, USA: Association for Computing Machinery, 2008. [Online]. Available:
https://doi.org/10.1145/1411304.1411311 p. 3546.

28

APPENDIX A: FULL IMPLEMENTATIONS

The implementation of the IO interface, FFI, and pattern matching is located in the llvm-

backend repository:

IO:

https://github.com/kframework/llvm-backend/blob/master/runtime/io/io.cpp

FFI:

https://github.com/kframework/llvm-backend/blob/master/runtime/meta/ffi.cpp

Heuristics

https://github.com/kframework/llvm-backend/blob/master/matching/

src/main/scala/org/kframework/backend/llvm/matching/Heuristics.scala
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APPENDIX B: IMP

// Copyright ( c ) 2014−2019 K Team. Al l Rights Reserved .

module IMP−SYNTAX
imports DOMAINS−SYNTAX

syntax AExp : := Int | Id

| ”−” Int

| AExp ”/” AExp [ l e f t , s t r i c t ]

> AExp ”+” AExp [ l e f t , s t r i c t ]

| ”(” AExp ”)” [ bracket ]

syntax BExp : := Bool

| AExp ”<=” AExp [ s e q s t r i c t ]

| ” !” BExp [ s t r i c t ]

> BExp ”&&” BExp [ l e f t , s t r i c t ( 1 ) ]

| ”(” BExp ”)” [ bracket ]

syntax Block : := ”{” ”}”
| ”{” Stmt ”}”

syntax Stmt : := Block

| Id ”=” AExp ” ;” [ s t r i c t ( 2 ) ]

| ” i f ” ”(” BExp ”)”

Block ” e l s e ” Block [ s t r i c t ( 1 ) ]

| ”whi l e ” ”(” BExp ”)” Block

> Stmt Stmt [ l e f t ]

syntax Pgm : := ” i n t ” Ids ” ; ” Stmt

syntax Ids : := L i s t { Id , ” , ”}
endmodule

module IMP

imports IMP−SYNTAX
imports DOMAINS

syntax KResult : := Int | Bool
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c on f i g u r a t i on <T co l o r=”ye l low”>

<k c o l o r=”green”> $PGM:Pgm </k>

<s t a t e c o l o r=”red”> .Map </s tate>

</T>

r u l e <k> X: Id => I . . . </k> <s ta te > . . . X |−> I . . . </ s tate>

r u l e I1 / I2 => I1 / Int I2 r e qu i r e s I2 =/=Int 0

ru l e I1 + I2 => I1 +Int I2

r u l e − I1 => 0 −Int I1

r u l e I1 <= I2 => I1 <=Int I2

r u l e ! T => notBool T

ru l e t rue && B => B

ru l e f a l s e && => f a l s e

r u l e {} => . [ s t r u c t u r a l ]

r u l e {S} => S [ s t r u c t u r a l ]

r u l e <k> X = I : Int ; => . . . . </k>

<s ta te > . . . X |−> ( => I ) . . . </ s tate>

r u l e S1 : Stmt S2 : Stmt => S1 S2 [ s t r u c t u r a l ]

r u l e i f ( t rue ) S e l s e => S

ru l e i f ( f a l s e ) e l s e S => S

ru l e whi l e (B) S

=> i f (B) {S whi l e (B) S} e l s e {} [ s t r u c t u r a l ]

r u l e <k> i n t (X, Xs => Xs ) ; </k>

<s ta te> Rho :Map ( .Map => X|−>0) </s tate>

r e qu i r e s notBool (X in keys (Rho ) )

r u l e i n t . Ids ; S => S [ s t r u c t u r a l ]

endmodule
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